Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation.
نویسندگان
چکیده
Production of blood cells is regulated by the interplay of various cytokines and bone marrow stromal cells. Recently, a ligand for the orphan receptor Mpl was identified as thrombopoietin (TPO), which specifically regulates megakaryocyte differentiation, and it was reported to be expressed mainly in liver and kidney. As it was found that thrombopoietin is also produced in bone marrow stromal cells, we studied further the roles of bone marrow stromal cells on megakaryocytopoiesis and platelet formation. The stromal cells stimulated growth and maturation of bone-marrow-derived megakaryocytes in the presence of thrombopoietin, and also supported growth of BaF3 cells expressing exogenous Mpl without thrombopoietin. Thrombopoietin induces drastic morphological change of megakaryocytes in bone marrow cells in vitro, ie, the formation of lengthy beaded cytoplasmic processes (proplatelet formation). However, when the purified megakaryocytes were cocultured with the stromal cells with or without thrombopoietin, most of the megakaryocytes adhered to the stromal cells and remained unchanged, while free megakaryocytes induced proplatelet formation. These observations indicated that the stromal cells in a hematopoietic microenvironment in bone marrow secrete thrombopoietin and stimulate proliferation and maturation of megakaryocytes, but the interaction of megakaryocytes with the stromal cells may suppress proplatelet formation.
منابع مشابه
Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2.
Megakaryopoiesis is the hierarchical differentiation of hematopoietic stem cells into megakaryocytes. Differentiating megakaryocytes undergo maturation characterized by endomitosis and produce numerous platelets through proplatelet formation. C-type lectin-like receptor 2 (CLEC-2) is a podoplanin (PDPN) receptor mainly expressed on platelets and megakaryocytes. Deletion of platelet/megakaryocyt...
متن کاملNitric oxide induces apoptosis in megakaryocytic cell lines.
Cytokines that stimulate inducible nitric oxide (NO) synthase can suppress the growth and differentiation of normal human bone marrow cells, including megakaryocytes. Since NO promotes apoptosis in other cell systems, we chose to study the determinants of apoptosis in megakaryocytic cells. We show that both exogenous and endogenous sources of NO can induce apoptosis in megakaryocytoid cell line...
متن کاملMegakaryocyte Differentiation and Platelet Formation from Human Cord Blood-derived CD34+ Cells.
Platelet production occurs principally in the bone marrow in a process known as thrombopoiesis. During thrombopoiesis, hematopoietic progenitor cells differentiate to form platelet precursors called megakaryocytes, which terminally differentiate to release platelets from long cytoplasmic processes termed proplatelets. Megakaryocytes are rare cells confined to the bone marrow and are therefore d...
متن کاملMonocytes stimulate fibroblastoid bone marrow stromal cells to produce multilineage hematopoietic growth factors.
In previous studies we have found that monocytes produce soluble factors that stimulate human umbilical vein endothelial cells to produce granulocyte-macrophage colony-stimulating activity (CSA), burst-promoting activity (BPA), and megakaryocyte colony-stimulating activity (Meg-CSA) as well as factors that stimulate T lymphocytes and neonatal fibroblasts to produce CSA. To test the hypothesis t...
متن کاملIncreased expression of HIF2α during iron deficiency–associated megakaryocytic differentiation
BACKGROUND Iron deficiency is associated with reactive thrombocytosis; however, the mechanisms driving this phenomenon remain unclear. We previously demonstrated that this occurs alongside enhanced megakaryopoiesis in iron-deficient rats, without alterations in the megakaryopoietic growth factors thrombopoietin, interleukin-6, or interleukin-11. OBJECTIVES The aim of this study was to evaluat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 87 4 شماره
صفحات -
تاریخ انتشار 1996